

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2006 by Itzik Ben-Gan

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

ISBN-13: 978-0-7356-2197-8
ISBN-10: 0-7356-2197-7
Library of Congress Control Number 2006924463

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 1 0 9 8 7 6

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press Inter-
national directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to mspinput@microsoft.com.

Microsoft, BizTalk, Excel, Microsoft Press, MSDN, Visio, Visual Basic, Visual C#, Visual Studio, Windows,
Windows NT, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation
in the United States and/or other countries. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided with-
out any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers,
or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly
by this book.

Acquisitions Editor: Ben Ryan
Project Editor: Kristine Haugseth
Technical Editor: Steve Kass
Indexers: Tony Ross and Lee Ross
Copy Editor: Roger LeBlanc

Body Part No. X11-97537

A02L621977.fm Page iii Wednesday, April 19, 2006 10:16 AM

v

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

Contents

Foreword. xi

Preface . xiii

Acknowledgments. .xvii

Introduction . xxi

1 Datatype-Related Problems, XML, and CLR UDTs .1

DATETIME Datatypes . 2

Storage Format of DATETIME . 2

Datetime Manipulation . 3

Datetime-Related Querying Problems . 8

Character-Related Problems . 25

Pattern Matching . 26

Case-Sensitive Filters . 31

Large Objects . 32

MAX Specifier . 32

BULK Rowset Provider . 34

Implicit Conversions . 36

Scalar Expressions. 36

Filter Expressions . 37

CLR-Based User-Defined Types . 40

Theoretical Introduction to UDTs. 41

Programming a UDT . 48

XML Data Type . 65

XML Support in a Relational Database . 65

When Should You Use XML Instead of Relational Representation? 67

XML Serialized Objects in a Database. 68

Using XML with Open Schema. 75

XML Data Type as a Parameter of a Stored Procedure. 81

XQuery Modification Statements. 82

Conclusion . 83

A04T621977.fm Page v Wednesday, April 19, 2006 11:17 AM

vi Contents

2 Temporary Tables and Table Variables . 85

Temporary Tables . 86

Local Temporary Tables. 86

Global Temporary Tables . 94

Table Variables . 96

Limitations . 96

tempdb . 97

Scope and Visibility . 97

Transaction Context. 97

Statistics. 98

tempdb Considerations. 101

Table Expressions . 102

Comparison Summary. 103

Summary Exercise—Relational Division . 104

Conclusion . 109

3 Cursors. 111

Using Cursors . 112

Cursor Overhead . 114

Dealing with Each Row Individually . 115

Order-Based Access . 116

Custom Aggregates. 116

Running Aggregations . 118

Maximum Concurrent Sessions . 122

Matching Problems . 131

Conclusion . 138

4 Dynamic SQL. 139

EXEC . 141

A Simple EXEC Example . 141

EXEC Has No Interface . 142

Concatenating Variables . 145

EXEC AT . 146

sp_executesql . 149

The sp_executesql Interface . 149

Statement Limit . 152

Environmental Settings . 153

Uses of Dynamic SQL. 153

Dynamic Maintenance Activities . 153

Storing Computations. 156

A04T621977.fm Page vi Wednesday, April 19, 2006 11:17 AM

Contents vii

Dynamic Filters . 160

Dynamic PIVOT/UNPIVOT. 166

SQL Injection . 172

SQL Injection: Code Constructed Dynamically at Client 172

SQL Injection: Code Constructed Dynamically at Server 173

Protecting Against SQL Injection . 177

Conclusion . 179

5 Views . 181

What Are Views?. 181

ORDER BY in a View . 183

Refreshing Views. 187

Modular Approach . 189

Updating Views. 198

View Options . 202

ENCRYPTION. 202

SCHEMABINDING . 203

CHECK OPTION . 204

VIEW_METADATA . 205

Indexed Views . 206

Conclusion . 211

6 User-Defined Functions. 213

Some Facts About UDFs . 214

Scalar UDFs . 214

T-SQL Scalar UDFs . 215

Performance Issues. 217

UDFs Used in Constraints . 219

CLR Scalar UDFs . 222

SQL Signature . 231

Table-Valued UDFs . 239

Inline Table-Valued UDFs . 239

Split Array . 242

Multistatement Table-Valued UDFs . 248

Per-Row UDFs . 252

Conclusion . 255

A04T621977.fm Page vii Wednesday, April 19, 2006 11:17 AM

viii Contents

7 Stored Procedures . 257

Types of Stored Procedures . 258

User-Defined Stored Procedures . 258

Special Stored Procedures . 262

System Stored Procedures . 264

Other Types of Stored Procedures . 266

The Stored Procedure Interface . 267

Input Parameters . 267

Output Parameters . 269

Resolution . 273

Compilations, Recompilations, and Reuse of Execution Plans 275

Reuse of Execution Plans . 275

Recompilations. 281

Parameter Sniffing Problem. 284

EXECUTE AS . 288

Parameterizing Sort Order . 289

Dynamic Pivot . 294

CLR Stored Procedures . 305

Conclusion . 313

8 Triggers . 315

AFTER Triggers . 316

The inserted and deleted Special Tables . 316

Identifying the Number of Affected Rows. 318

Identifying the Type of Trigger . 321

Not Firing Triggers for Specific Statements . 324

Nesting and Recursion . 328

UPDATE and COLUMNS_UPDATED. 329

Auditing Example . 333

INSTEAD OF Triggers. 335

Per-Row Triggers . 336

Used with Views . 339

Automatic Handling of Sequences . 342

DDL Triggers . 344

Database-Level Triggers . 346

Server-Level Triggers . 350

CLR Triggers . 351

Conclusion . 360

A04T621977.fm Page viii Wednesday, April 19, 2006 11:17 AM

Contents ix

9 Transactions . 361

What Are Transactions? . 362

Locks . 364

Isolation Levels . 370

Read Uncommitted . 371

Read Committed. 372

Repeatable Read. 373

Serializable. 374

New Isolation Levels . 375

Save Points. 381

Deadlocks . 383

Simple Deadlock Example. 384

Deadlock Caused by Missing Indexes . 385

Deadlock with a Single Table . 388

Conclusion . 390

10 Exception Handling . 391

Exception Handling prior to SQL Server 2005 . 391

Exception Handling in SQL Server 2005 . 395

TRY/CATCH . 395

New Exception-Handling Functions . 396

Errors in Transactions . 399

Conclusion . 409

11 Service Broker. 411

Dialog Conversations . 411

Conversations . 412

Messages . 415

Contracts . 417

DEFAULT. 418

Queues . 418

Services . 423

Begining and Ending Dialogs . 424

Conversation Endpoints . 426

Conversation Groups . 428

Sending and Receiving . 430

Sample Dialog. 434

Poison Messages. 442

Dialog Security . 443

A04T621977.fm Page ix Wednesday, April 19, 2006 11:17 AM

x Contents

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

Asymmetric Key Authentication . 444

Configuring Dialog Security. 445

Routing and Distribution . 448

Adjacent Broker Protocol . 449

Service Broker Endpoints . 450

Routes . 455

Scenarios . 460

Reliable SOA . 460

Asynchronous Processing . 461

Where Does Service Broker Fit?. 462

What Service Broker Is . 462

What Service Broker Isn’t . 462

Service Broker and MSMQ . 462

Service Broker and BizTalk . 463

Service Broker and Windows Communication Foundation 463

Conclusion . 464

Appendix A: Companion to CLR Routines. 465

Create the CLRUtilities Database: SQL Server . 466

Development: Visual Studio . 466

Deployment and Testing: Visual Studio and SQL Server . 467

Index. 491

A04T621977.fm Page x Wednesday, April 19, 2006 11:17 AM

111

Chapter 3

Cursors

In this chapter:

Using Cursors .112

Cursor Overhead .114

Dealing with Each Row Individually .115

Order-Based Access .116

Conclusion .138

You probably won’t find many database professionals arguing about the necessity for SELECT
statements, but many argue about whether cursors are necessary. Arguments also arise about the
use of temporary tables; dynamic code; and integrated XML, XQuery, and CLR. There must be
a reason why database professionals are in complete agreement about some aspects of Microsoft
SQL Server 2005 but have conflicting opinions about other aspects (call the constructs under
conflicting opinions arguable constructs). Let me offer my two cents’ worth on the subject.

These arguable constructs have a high potential for misuse because database professionals
often lack knowledge and experience in set-based querying and the relational model. Such
misuse can lead to very poor implementations. Defenders of these arguable constructs would
argue that any construct can be abused because of lack of knowledge and experience. Still,
I think that there is a difference between these constructs and many others. Knives and
matches are very useful tools, but only in the hands of responsible people. You wouldn’t want
those devices in the hands of children. Even with no bad intentions on the part of the users,
the potential for catastrophe is high. A child could also do damage with crayons and books,
but the likelihood of that happening is much lower and the damage wouldn’t be as severe.

I didn’t say that I side with those who oppose the arguable constructs, or that I’m on any side
for that matter. But I do think that placing such tools in the hands of programmers who lack
adequate knowledge of set-based querying and the relational model can yield bad results. The
key is having the maturity to recognize the appropriate time and place to use each construct
(static set-based queries, dynamic SQL, cursors, XML, CLR, table expressions, temporary
tables, and so on). This book tries to guide you to that level of maturity.

I hope you will forgive me for the philosophical approach to this subject, but for me SQL is
a “way” that has important philosophical aspects. In my mind—and you don’t have to agree—
I separate the careers of T-SQL programmers into three typical phases:

1. Procedural. This is the phase in which programmers have just started to work with
databases. They have insufficient experience working with the relational model

C03621977.fm Page 111 Wednesday, April 19, 2006 8:32 AM

112 Inside Microsoft SQL Server 2005: T-SQL Programming

and set-based thinking. In this phase, it’s common to see misuse of tools such as cursors,
temporary tables, dynamic execution, and procedural coding in general. Programmers
at this stage are usually oblivious to the damage that they’re causing.

2. Becoming sober. This is the phase in which programmers realize there’s more to data-
base programming—that SQL is not a nuisance that interferes with writing procedural
code but, rather, it’s based on the strong foundations of set theory and the relational
model. In this phase, programmers tend to believe “experts” who say cursors, temporary
tables, and dynamic execution are evil and should never be used. At this point, program-
mers either avoid using such constructs altogether or really feel bad about the code they
write. There’s usually lack of confidence at this stage.

3. Maturity. This stage is characterized by the void or Zen mindset. In this phase, program-
mers have deep knowledge and understanding, and they feel confident about their code.
This doesn’t mean they stop pursuing deeper knowledge or improving fundamental
techniques. In this phase, programmers apply set-based thinking for the most part, but
they realize that there’s a time and place for other constructs as well. I refer to this phase
as the “void” in the positive and abstract sense—that is, programmers develop intuition
regarding the type of solution that would fit a given task and don’t need to spend much
time determining which technique is appropriate.

Developing the intuition described in phase three involves knowing when the typical
approach of using pure static SQL programming will not do the job. Although pure static SQL
programming is typically the way to go, it will only get you so far in some cases. There are
cases where using temporary tables can substantially improve performance; where dynamic
execution actually overcomes complex problems; where the use of procedural languages such
as C# and Visual Basic allows more flexibility without conflicting with the relational model;
and where storing states of data in XML format makes sense. This book explores these cases
in dedicated chapters and sections.

Using Cursors
In this chapter, I’ll explain the types of problems for which cursors are a reasonable solution,
even though such cases are not common. The goal of the chapter is to show you how to use
them wisely.

I’ll assume that you have sufficient technical knowledge of the various cursor types and know
the syntax for declaring and using them. If you don’t, you can find a lot of information about
cursors in Books Online. My focus is to explain why cursors are typically not the right choice
and to present the cases in which cursors do make sense.

So why should you avoid using cursors for the most part?

For one, cursors conflict with the main premise of the relational model. Using cursors, you
apply procedural logic rather than set-based logic. That is, you write a lot of code with itera-
tions, where you mainly focus on “how” to deal with data. When you apply set-based logic,

C03621977.fm Page 112 Wednesday, April 19, 2006 8:32 AM

Chapter 3 Cursors 113

you typically write substantially less code, as you focus on “what” you want and not how to get
it. You need to be able to recognize the cases where a problem is procedural/iterative in
nature—where you truly need to process one row at a time. In these cases, you should consider
using a cursor. For example, you have a table that contains user information along with e-mail
addresses, and you need to send e-mail to all users. Or you need to invoke a stored procedure
per each row in some table and provide the stored procedure with column values from each
row as arguments.

Cursors also have a lot of overhead involved with the row-by-row manipulation and are typi-
cally substantially slower than set-based code (queries). I demonstrate the use of set-based
solutions throughout the book. You need to be able to measure and estimate the cursor over-
head and identify the few scenarios where cursors will yield better performance than set-
based code. In some cases, data distribution will determine whether a cursor or a set-based
solution will yield better performance.

There’s another very important aspect of cursors—they can request and assume ordered data
as input, whereas queries can accept only a relational input, which by definition cannot
assume a particular order. This difference is important in identifying scenarios in which
cursors might actually be faster—such as problems that are tightly based on ordered access
to the data. Examples of such problems are running aggregations and ranking calculations,
resolving some temporal problems, and so on. The I/O cost involved with the cursor activity
plus the cursor overhead might end up being lower than a set-based solution that performs
substantially more I/O.

ANSI recognizes the practical need for manipulation of ordered data and provides some stan-
dards for addressing this need. In extensions to the ANSI SQL:1999 standard and in the ANSI
SQL:2003 standard, you can find several query constructs that inherently rely on ordering—
for example, the ANSI OVER(ORDER BY …) clause, which determines the calculation order
for ranking and aggregate calculations, or the SEARCH clause defined with recursive CTEs,
which determines the order of traversal of trees.

SQL Server 2005 implements the OVER clause with support for ORDER BY only for ranking
functions, and SQL Server 2005’s engine was, of course, enhanced to support the rapid per-
formance of such calculations. As a result, ranking calculations using queries are now substan-
tially faster than cursor-based solutions. With aggregate functions in SQL Server 2005,
however, the OVER clause does not support ORDER BY. Therefore, set-based solutions to
compute running aggregations with large groups of data are slower than cursor-based solu-
tions. I’ll demonstrate this in the section Running Aggregations later in this chapter. The
SEARCH clause for recursive common table expressions (CTEs) has not been implemented in
SQL Server 2005.

Another kind of problem where cursor solutions are faster than query solutions is matching
problems, which I’ll also demonstrate. With those, I haven’t found set-based solutions that
perform nearly as well as cursor solutions. But I haven’t given up. One of my goals is to find
set-based solutions for problems that are not procedural. Some of those problems could have

C03621977.fm Page 113 Wednesday, April 19, 2006 8:32 AM

114 Inside Microsoft SQL Server 2005: T-SQL Programming

set-based solutions if newer ANSI constructs had been supported in SQL Server. I hope that
SQL Server will implement those in future versions. And when the ANSI standard doesn’t
have answers, I believe there will be vendor-specific product extensions, followed by motions
to the ANSI committee to add them to the standard.

Cursor Overhead
In this chapter’s introduction, I talked about the benefits that set-based solutions have over
cursor-based ones. I mentioned both logical and performance benefits. For the most part,
efficiently written set-based solutions will outperform cursor-based solutions for two reasons.

First, you empower the optimizer to do what it’s so good at—generating multiple valid execu-
tion plans, and choosing the most efficient one. When you apply a cursor-based solution,
you’re basically forcing the optimizer to go with a rigid plan that doesn’t leave much room for
optimization—at least not as much room as with set-based solutions.

Second, row-by-row manipulation creates a lot of overhead. You can run some simple tests to
witness and measure this overhead—for example, just scanning a table with a simple query
and comparing the results to scanning it with a cursor. To compare apples to apples, make
sure you’re scanning the same amount of data as you did with the cursor-based query. You can
eliminate the actual disk I/O cost by running the code twice. (The first run will load the data
to cache.) To eliminate the time it takes to generate the output, you should run your code with
the Discard Results After Execution option in SQL Server Management Studio (SSMS) turned
on. The difference in performance between the set-based code and the cursor code will then
be the cursor’s overhead.

I will now demonstrate how to compare scanning the same amount of data with set-based
code versus with a cursor. Run the following code to generate a table called T1, with a million
rows, each containing slightly more than 200 bytes:

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.T1') IS NOT NULL

DROP TABLE dbo.T1;

GO

SELECT n AS keycol, CAST('a' AS CHAR(200)) AS filler

INTO dbo.T1

FROM dbo.Nums;

CREATE UNIQUE CLUSTERED INDEX idx_keycol ON dbo.T1(keycol);

You can find the code to create and populate the Nums table in Chapter 1.

Turn on the Discard Results After Execution option in SSMS (under Tools|Options|Query
Results|SQL Server|Results to Grid or Results to Text). Now clear the cache:

DBCC DROPCLEANBUFFERS;

C03621977.fm Page 114 Wednesday, April 19, 2006 8:32 AM

Chapter 3 Cursors 115

Run the following set-based code twice—the first run will measure performance against cold
cache, and the second will measure it against warm cache:

SELECT keycol, filler FROM dbo.T1;

On my system, this query ran for 4 seconds against cold cache and 2 seconds against warm
cache. Clear the cache again, and then run the cursor code twice:

DECLARE @keycol AS INT, @filler AS CHAR(200);

DECLARE C CURSOR FAST_FORWARD FOR SELECT keycol, filler FROM dbo.T1;

OPEN C

FETCH NEXT FROM C INTO @keycol, @filler;

WHILE @@fetch_status = 0

BEGIN

-- Process data here

FETCH NEXT FROM C INTO @keycol, @filler;

END

CLOSE C;

DEALLOCATE C;

This code ran for 22 seconds against cold cache and 20 seconds against warm cache. Consid-
ering the warm cache example, in which there’s no physical I/O involved, the cursor code ran
ten times more slowly than the set-based code, and notice that I used the fastest cursor you
can get—FAST_FORWARD. Both solutions scanned the same amount of data. Besides the per-
formance overhead, you also have the development and maintenance overhead of your code.
This is a very basic example involving little code; in production environments with more
complex code, the problem is, of course, much worse.

Dealing with Each Row Individually
Remember that cursors can be useful when the problem is a procedural one, and you must
deal with each row individually. I provided examples of such scenarios earlier. Here I want to
show an alternative to cursors that programmers may use to apply iterative logic, and compare
its performance with the cursor code I just demonstrated in the previous section. Remember
that the cursor code that scanned a million rows took approximately 20 seconds to complete.
Another common technique to iterate through a table’s rows is to loop through the keys and
use a set-based query for each row. To test the performance of such a solution, make sure the
Discard Results After Execution option in SSMS is still turned on. Then run the following code:

DECLARE @keycol AS INT, @filler AS CHAR(200);

SELECT @keycol = keycol, @filler = filler

FROM (SELECT TOP (1) keycol, filler

FROM dbo.T1

ORDER BY keycol) AS D;

WHILE @@rowcount = 1

BEGIN

-- Process data here

C03621977.fm Page 115 Wednesday, April 19, 2006 8:32 AM

116 Inside Microsoft SQL Server 2005: T-SQL Programming

-- Get next row

SELECT @keycol = keycol, @filler = filler

FROM (SELECT TOP (1) keycol, filler

FROM dbo.T1

WHERE keycol > @keycol

ORDER BY keycol) AS D;

END

This implementation is a bit “cleaner” than dealing with a cursor, and that’s the aspect of it
that I like. You use a TOP (1) query to grab the first row (based on key order). Within a
loop, when a row was found in the previous iteration, you process the data and request the
next row (the row with the next key). This code ran for about 90 seconds—several times
slower than the cursor code. I created a clustered index on keycol to improve performance
by accessing the desired row in each iteration with minimal I/O. Without that index, this
code would run substantially slower because each invocation of the query would need to
rescan large portions of data. A cursor solution based on sorted data would also benefit
from an index and would run substantially slower without one because it would need to
sort the data after scanning it. With large tables and no index on the sort columns, the sort
operation can be very expensive because sorting in terms of complexity is O(n log n), while
scanning is only O(n).

Before you proceed, make sure you turn off the “Discard Results After Execution” option in
SSMS.

Order-Based Access
In the introduction, I mentioned that cursors have the potential to yield better performance
than set-based code when the problem is inherently order based. In this section, I’ll show
some examples. Where relevant, I’ll discuss query constructs that ANSI introduces to allow
for “cleaner” code that performs well without the use of cursors. However, some of these ANSI
constructs have not been implemented in SQL Server 2005.

Custom Aggregates

In Inside T-SQL Querying, I discussed custom aggregates by describing problems that require
you to aggregate data even though SQL Server doesn’t provide such aggregates as built-in
functions—for example, product of elements, string concatenation, and so on. I described four
classes of solutions and demonstrated three of them: pivoting, which is limited to a small
number of elements in a group; user-defined aggregates (UDAs) written in a .NET language,
which force you to write in a language other than T-SQL and enable CLR support in SQL
Server; and specialized solutions, which can be very fast but are applicable to specific cases
and are not suited to generic use. Another approach to solving custom aggregate problems is
using cursors. This approach is not very fast; nevertheless, it is straightforward, generic, and
not limited to situations in which you have a small number of elements in a group. To see a
demonstration of a cursor-based solution for custom aggregates, run the code in Listing 3-1 to

C03621977.fm Page 116 Wednesday, April 19, 2006 8:32 AM

Chapter 3 Cursors 117

create and populate the Groups table, which I also used in my examples in Inside T-SQL
Querying.

Listing 3-1 Creating and populating the Groups table

USE tempdb;

GO

IF OBJECT_ID('dbo.Groups') IS NOT NULL

DROP TABLE dbo.Groups;

GO

CREATE TABLE dbo.Groups

(

groupid VARCHAR(10) NOT NULL,

memberid INT NOT NULL,

string VARCHAR(10) NOT NULL,

val INT NOT NULL,

PRIMARY KEY (groupid, memberid)

);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('a', 3, 'stra1', 6);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('a', 9, 'stra2', 7);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('b', 2, 'strb1', 3);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('b', 4, 'strb2', 7);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('b', 5, 'strb3', 3);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('b', 9, 'strb4', 11);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('c', 3, 'strc1', 8);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('c', 7, 'strc2', 10);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('c', 9, 'strc3', 12);

Listing 3-2 shows cursor code that calculates the aggregate product of the val column for each
group represented by the groupid column, and it generates the output shown in Table 3-1.

Listing 3-2 Cursor code for custom aggregate

DECLARE

@Result TABLE(groupid VARCHAR(10), product BIGINT);

DECLARE

@groupid AS VARCHAR(10), @prvgroupid AS VARCHAR(10),

@val AS INT, @product AS BIGINT;

DECLARE C CURSOR FAST_FORWARD FOR

SELECT groupid, val FROM dbo.Groups ORDER BY groupid;

C03621977.fm Page 117 Wednesday, April 19, 2006 8:32 AM

118 Inside Microsoft SQL Server 2005: T-SQL Programming

OPEN C

FETCH NEXT FROM C INTO @groupid, @val;

SELECT @prvgroupid = @groupid, @product = 1;

WHILE @@fetch_status = 0

BEGIN

IF @groupid <> @prvgroupid

BEGIN

INSERT INTO @Result VALUES(@prvgroupid, @product);

SELECT @prvgroupid = @groupid, @product = 1;

END

SET @product = @product * @val;

FETCH NEXT FROM C INTO @groupid, @val;

END

IF @prvgroupid IS NOT NULL

INSERT INTO @Result VALUES(@prvgroupid, @product);

CLOSE C;

DEALLOCATE C;

SELECT groupid, product FROM @Result;

The algorithm is straightforward: scan the data in groupid order; while traversing the rows
in the group, keep multiplying by val; and whenever the groupid value changes, store the result
of the product for the previous group aside in a table variable. When the loop exits, you still
hold the aggregate product for the last group, so store it in the table variable as well unless the
input was empty. Finally, return the aggregate products of all groups as output.

Running Aggregations

The previous problem, which discussed custom aggregates, used a cursor-based solution that
scanned the data only once, but so did the pivoting solution, the UDA solution, and some of
the specialized set-based solutions. If you consider that cursors incur more overhead than set-
based solutions that scan the same amount of data, you can see that the cursor-based solu-
tions are bound to be slower. On the other hand, set-based solutions for running aggregation
problems in SQL Server 2005 involve rescanning portions of the data multiple times, whereas
the cursor-based solutions scan the data only once.

Table 3-1 Aggregate Product

Groupid product

A 42

B 693

C 960

C03621977.fm Page 118 Wednesday, April 19, 2006 8:32 AM

Chapter 3 Cursors 119

I covered Running Aggregations in Inside T-SQL Querying. Here, I’ll demonstrate cursor-based
solutions. Run the following code, which creates and populates the EmpOrders table:

USE tempdb;

GO

IF OBJECT_ID('dbo.EmpOrders') IS NOT NULL

DROP TABLE dbo.EmpOrders;

GO

CREATE TABLE dbo.EmpOrders

(

empid INT NOT NULL,

ordmonth DATETIME NOT NULL,

qty INT NOT NULL,

PRIMARY KEY(empid, ordmonth)

);

INSERT INTO dbo.EmpOrders(empid, ordmonth, qty)

SELECT O.EmployeeID,

CAST(CONVERT(CHAR(6), O.OrderDate, 112) + '01'

AS DATETIME) AS ordmonth,

SUM(Quantity) AS qty

FROM Northwind.dbo.Orders AS O

JOIN Northwind.dbo.[Order Details] AS OD

ON O.OrderID = OD.OrderID

GROUP BY EmployeeID,

CAST(CONVERT(CHAR(6), O.OrderDate, 112) + '01'

AS DATETIME);

This is the same table and sample data I used in Inside T-SQL Querying to demonstrate
set-based solutions.

The cursor-based solution is straightforward. In fact, it’s similar to calculating custom aggre-
gates except for a simple difference: the code calculating custom aggregates set aside in a table
variable only the final aggregate for each group, while the code calculating running aggrega-
tions sets aside the accumulated aggregate value for each row. Listing 3-3 shows the code that
calculates running total quantities for each employee and month and yields the output shown
in Table 3-2 (abbreviated).

Listing 3-3 Cursor code for custom aggregate

DECLARE @Result

TABLE(empid INT, ordmonth DATETIME, qty INT, runqty INT);

DECLARE

@empid AS INT,@prvempid AS INT, @ordmonth DATETIME,

@qty AS INT, @runqty AS INT;

DECLARE C CURSOR FAST_FORWARD FOR

SELECT empid, ordmonth, qty

FROM dbo.EmpOrders

ORDER BY empid, ordmonth;

OPEN C

C03621977.fm Page 119 Wednesday, April 19, 2006 8:32 AM

120 Inside Microsoft SQL Server 2005: T-SQL Programming

FETCH NEXT FROM C INTO @empid, @ordmonth, @qty;

SELECT @prvempid = @empid, @runqty = 0;

WHILE @@fetch_status = 0

BEGIN

IF @empid <> @prvempid

SELECT @prvempid = @empid, @runqty = 0;

SET @runqty = @runqty + @qty;

INSERT INTO @Result VALUES(@empid, @ordmonth, @qty, @runqty);

FETCH NEXT FROM C INTO @empid, @ordmonth, @qty;

END

CLOSE C;

DEALLOCATE C;

SELECT empid, CONVERT(VARCHAR(7), ordmonth, 121) AS ordmonth,

qty, runqty

FROM @Result

ORDER BY empid, ordmonth;

Table 3-2 Running Aggregations (Abbreviated)

empid Ordmonth qty runqty

1 1996-07 121 121

1 1996-08 247 368

1 1996-09 255 623

1 1996-10 143 766

1 1996-11 318 1084

1 1996-12 536 1620

1 1997-01 304 1924

1 1997-02 168 2092

1 1997-03 275 2367

1 1997-04 20 2387

...

2 1996-07 50 50

2 1996-08 94 144

2 1996-09 137 281

2 1996-10 248 529

2 1996-11 237 766

2 1996-12 319 1085

2 1997-01 230 1315

2 1997-02 36 1351

C03621977.fm Page 120 Wednesday, April 19, 2006 8:32 AM

Chapter 3 Cursors 121

The cursor solution scans the data only once, meaning that it has linear performance degra-
dation with respect to the number of rows in the table. The set-based solution suffers from an
n2 performance issue, in which n refers to the number of rows per group. If you have g groups
with n number of rows per group, you scan g × (n + n2)/2 rows. This formula assumes that
you have an index on (groupid, val). Without an index, you simply have n2 rows scanned,
where n is the number of rows in the table. If the group size is small enough (for example,
a dozen rows), the set-based solution that uses an index would typically be faster than the
cursor solution. The cursor’s overhead is still higher than the set-based solution’s extra work
of scanning more data. However, the set-based solution scans substantially more data (unless
there are only a few rows per group), resulting in a slower solution where performance
degrades in an n2 manner with respect to the group size.

To gain a sense of these performance differences, look at Figure 3-1, which has the result of a
benchmark.

Figure 3-1 Benchmark for running calculations

You can see the run time of the solutions with respect to the number of rows in the table,
assuming a single group—that is, by calculating running aggregations for the whole table. The
horizontal axis has the number of rows in the table divided by 1000, ranging from 0 through

2 1997-03 151 1502

2 1997-04 468 1970

...

Table 3-2 Running Aggregations (Abbreviated)

empid Ordmonth qty runqty

360

400

320

280

240

200

160

120

80

40

0
0 10 20 30 40 50 60 70 80 90 100

set-based cursor

Rows (thousands)

Max Concurrent Sessions Benchmark

R
u

n
 T

im
e
 (

S
e
c)

C03621977.fm Page 121 Wednesday, April 19, 2006 8:32 AM

122 Inside Microsoft SQL Server 2005: T-SQL Programming

100,000 rows. The y axis ranges from 0 through 400 seconds. You can see a linear graph for
the cursor solution, and a nice n2 parabola for the set-based one. You can also notice clearly
that beyond a very small number of rows the cursor solution performs dramatically faster.

This is one of the problems that ANSI already provided an answer for in the form of query
constructs; however, SQL Server has not yet implemented it. According to ANSI, you would
write the following solution:

SELECT empid, CONVERT(VARCHAR(7), ordmonth, 121) AS ordmonth, qty,

SUM(qty) OVER(PARTITION BY empid ORDER BY ordermonth) AS runqty

FROM dbo.EmpOrders;

As mentioned earlier, SQL Server 2005 already introduced the infrastructure to support the
OVER clause. It currently implements it with both the PARTITION BY and ORDER BY clauses
for ranking functions, but only with the PARTITION BY clause for aggregate functions. Hope-
fully, future versions of SQL Server will enhance the support for the OVER clause. Queries
such as the one just shown have the potential to run substantially faster than the cursor solu-
tion; the infrastructure added to the product relies on a single scan of the data to perform such
calculations.

Maximum Concurrent Sessions

The Maximum Concurrent Sessions problem is yet another example of calculations based on
ordered data. You record data for user sessions against different applications in a table called
Sessions. Run the code in Listing 3-4 to create and populate the Sessions table.

Listing 3-4 Creating and populating the Sessions table

USE tempdb;

GO

IF OBJECT_ID('dbo.Sessions') IS NOT NULL

DROP TABLE dbo.Sessions;

GO

CREATE TABLE dbo.Sessions

(

keycol INT NOT NULL IDENTITY PRIMARY KEY,

app VARCHAR(10) NOT NULL,

usr VARCHAR(10) NOT NULL,

host VARCHAR(10) NOT NULL,

starttime DATETIME NOT NULL,

endtime DATETIME NOT NULL,

CHECK(endtime > starttime)

);

INSERT INTO dbo.Sessions

VALUES('app1', 'user1', 'host1', '20030212 08:30', '20030212 10:30');

INSERT INTO dbo.Sessions

VALUES('app1', 'user2', 'host1', '20030212 08:30', '20030212 08:45');

INSERT INTO dbo.Sessions

VALUES('app1', 'user3', 'host2', '20030212 09:00', '20030212 09:30');

C03621977.fm Page 122 Wednesday, April 19, 2006 8:32 AM

Chapter 3 Cursors 123

INSERT INTO dbo.Sessions

VALUES('app1', 'user4', 'host2', '20030212 09:15', '20030212 10:30');

INSERT INTO dbo.Sessions

VALUES('app1', 'user5', 'host3', '20030212 09:15', '20030212 09:30');

INSERT INTO dbo.Sessions

VALUES('app1', 'user6', 'host3', '20030212 10:30', '20030212 14:30');

INSERT INTO dbo.Sessions

VALUES('app1', 'user7', 'host4', '20030212 10:45', '20030212 11:30');

INSERT INTO dbo.Sessions

VALUES('app1', 'user8', 'host4', '20030212 11:00', '20030212 12:30');

INSERT INTO dbo.Sessions

VALUES('app2', 'user8', 'host1', '20030212 08:30', '20030212 08:45');

INSERT INTO dbo.Sessions

VALUES('app2', 'user7', 'host1', '20030212 09:00', '20030212 09:30');

INSERT INTO dbo.Sessions

VALUES('app2', 'user6', 'host2', '20030212 11:45', '20030212 12:00');

INSERT INTO dbo.Sessions

VALUES('app2', 'user5', 'host2', '20030212 12:30', '20030212 14:00');

INSERT INTO dbo.Sessions

VALUES('app2', 'user4', 'host3', '20030212 12:45', '20030212 13:30');

INSERT INTO dbo.Sessions

VALUES('app2', 'user3', 'host3', '20030212 13:00', '20030212 14:00');

INSERT INTO dbo.Sessions

VALUES('app2', 'user2', 'host4', '20030212 14:00', '20030212 16:30');

INSERT INTO dbo.Sessions

VALUES('app2', 'user1', 'host4', '20030212 15:30', '20030212 17:00');

CREATE INDEX idx_app_st_et ON dbo.Sessions(app, starttime, endtime);

The request is to calculate, for each application, the maximum number of sessions that were
open at the same point in time. Such types of calculations are required to determine the cost
of a type of service license that charges by the maximum number of concurrent sessions.

Try to develop a set-based solution that works; then try to optimize it; and then try to estimate
its performance potential. Later I’ll discuss a cursor-based solution and show a benchmark
that compares the set-based solution with the cursor-based solution.

One way to solve the problem is to generate an auxiliary table with all possible points in time
during the covered period, use a subquery to count the number of active sessions during each
such point in time, create a derived table/CTE from the result table, and finally group the rows
from the derived table by application, requesting the maximum count of concurrent sessions
for each application. Such a solution is extremely inefficient. Assuming you create the optimal
index for it—one on (app, starttime, endtime)—the total number of rows you end up scanning
just in the leaf level of the index is huge. It’s equal to the number of rows in the auxiliary table
multiplied by the average number of active sessions at any point in time. To give you a sense
of the enormity of the task, if you need to perform the calculations for a month’s worth of
activity, the number of rows in the auxiliary table will be: 31 (days) × 24 (hours) × 60 (min-
utes) × 60 (seconds) × 300 (units within a second). Now multiply the result of this calculation
by the average number of active sessions at any given point in time (say 20 as an example),
and you get 16,070,400,000.

C03621977.fm Page 123 Wednesday, April 19, 2006 8:32 AM

124 Inside Microsoft SQL Server 2005: T-SQL Programming

Of course there’s room for optimization. There are periods in which the number of concurrent
sessions doesn’t change, so why calculate the counts for those? The count changes only when
a new session starts (increased by 1) or an existing session ends (decreased by 1). Further-
more, because a start of a session increases the count and an end of a session decreases it, a
start event of one of the sessions is bound to be the point at which you will find the maximum
you’re looking for. Finally, if two sessions start at the same time, there’s no reason to calculate
the counts for both. So you can apply a DISTINCT clause in the query that returns the start
times for each application, although with an accuracy level of 31/3 milliseconds (ms), the num-
ber of duplicates would be very small—unless you’re dealing with very large volumes of data.

In short, you can simply use as your auxiliary table a derived table or CTE that returns all dis-
tinct start times of sessions per application. From there, all you need to do is follow logic sim-
ilar to that mentioned earlier. Here’s the optimized set-based solution, yielding the output
shown in Table 3-3:

SELECT app, MAX(concurrent) AS mx

FROM (SELECT app,

(SELECT COUNT(*)

FROM dbo.Sessions AS S2

WHERE S1.app = S2.app

AND S1.ts >= S2.starttime

AND S1.ts < S2.endtime) AS concurrent

FROM (SELECT DISTINCT app, starttime AS ts

FROM dbo.Sessions) AS S1) AS C

GROUP BY app;

Notice that instead of using a BETWEEN predicate to determine whether a session was active
at a certain point in time (ts), I used ts >= starttime AND ts < endtime. If a session ends at the ts
point in time, I don’t want to consider it as active.

The execution plan for this query is shown in Figure 3-2.

Figure 3-2 Execution plan for Maximum Concurrent Sessions, set-based solution

First, the index I created on (app, starttime, endtime) is scanned and duplicates are removed
(by the stream aggregate operator). Unless the table is huge, you can assume that the number

Table 3-3 Maximum Concurrent Sessions Set-Based Solution

app mx

app1 4

app2 3

C03621977.fm Page 124 Wednesday, April 19, 2006 8:32 AM

Chapter 3 Cursors 125

of rows returned will be very close to the number of rows in the table. For each app, starttime
(call it ts) returned after removing duplicates, a Nested Loops operator initiates activity that
calculates the count of active sessions (by a seek within the index, followed by a partial scan
to count active sessions). The number of pages read in each iteration of the Nested Loops
operator is the number of levels in the index plus the number of pages consumed by the num-
ber of active sessions. To make my point, I’ll focus on the number of rows scanned at the leaf
level because this number varies based on active sessions. Of course, to do adequate perfor-
mance estimations, you should take page counts (logical reads) as well as many other factors
into consideration. If you have n rows in the table, assuming that most of them have unique
app, starttime values and there are o overlapping sessions at any given point in time, you’re
looking at the following: n × o rows scanned in total at the leaf level, beyond the pages scanned
by the seek operations that got you to the leaf.

You now need to figure out how this solution scales when the table grows larger. Typically,
such reports are required periodically—for example, once a month, for the most recent month.
With the recommended index in place, the performance shouldn’t change as long as the traf-
fic doesn’t increase for a month’s worth of activity—that is, if it’s related to n × o (where n is the
number of rows for the recent month). But suppose that you anticipate traffic increase by a
factor of f? If traffic increases by a factor of f, both total rows and number of active sessions at
a given time grow by that factor; so in total, the number of rows scanned at the leaf level
becomes (n × f)(o × f) = n × o × f 2. You see, as the traffic grows, performance doesn’t degrade
linearly; rather, it degrades much more drastically.

Next let’s talk about a cursor-based solution. The power of a cursor-based solution is that it
can scan data in order. Relying on the fact that each session represents two events—one that
increases the count of active sessions, and one that decreases the count—I’ll declare a cursor
for the following query:

SELECT app, starttime AS ts, 1 AS event_type FROM dbo.Sessions

UNION ALL

SELECT app, endtime, -1 FROM dbo.Sessions

ORDER BY app, ts, event_type;

This query returns the following for each session start or end event: the application (app), the
timestamp (ts); an event type (event_type) of +1 for a session start event or –1 for a session end
event. The events are sorted by app, ts, and event_type. The reason for sorting by app, ts is obvi-
ous. The reason for adding event_type to the sort is to guarantee that if a session ends at the
same time another session starts, you will take the end event into consideration first (because
sessions are considered to have ended at their end time). Other than that, the cursor code is
straightforward—simply scan the data in order and keep adding up the +1s and –1s for each
application. With every new row scanned, check whether the cumulative value to that point is
greater than the current maximum for that application, which you store in a variable. If it is,
store it as the new maximum. When done with an application, insert a row containing the
application ID and maximum into a table variable. That’s about it. You can find the complete
cursor solution in Listing 3-5.

C03621977.fm Page 125 Wednesday, April 19, 2006 8:32 AM

126 Inside Microsoft SQL Server 2005: T-SQL Programming

Listing 3-5 Cursor code for Maximum Concurrent Sessions, cursor-based solution

DECLARE

@app AS VARCHAR(10), @prevapp AS VARCHAR (10), @ts AS datetime,

@event_type AS INT, @concurrent AS INT, @mx AS INT;

DECLARE @Result TABLE(app VARCHAR(10), mx INT);

DECLARE C CURSOR FAST_FORWARD FOR

SELECT app, starttime AS ts, 1 AS event_type FROM dbo.Sessions

UNION ALL

SELECT app, endtime, -1 FROM dbo.Sessions

ORDER BY app, ts, event_type;

OPEN C;

FETCH NEXT FROM C INTO @app, @ts, @event_type;

SELECT @prevapp = @app, @concurrent = 0, @mx = 0;

WHILE @@fetch_status = 0

BEGIN

IF @app <> @prevapp

BEGIN

INSERT INTO @Result VALUES(@prevapp, @mx);

SELECT @prevapp = @app, @concurrent = 0, @mx = 0;

END

SET @concurrent = @concurrent + @event_type;

IF @concurrent > @mx SET @mx = @concurrent;

FETCH NEXT FROM C INTO @app, @ts, @event_type;

END

IF @prevapp IS NOT NULL

INSERT INTO @Result VALUES(@prevapp, @mx);

CLOSE C

DEALLOCATE C

SELECT * FROM @Result;

The cursor solution scans the leaf of the index only twice. You can represent its cost as n × 2 × v,
where v is the cursor overhead involved with each single row manipulation. Also, if the traffic
grows by a factor of f, the performance degrades linearly to n × 2 × v × f. You realize that unless
you’re dealing with a very small input set, the cursor solution has the potential to perform
much faster, and as proof, you can use the code in Listing 3-6 to conduct a benchmark test.
Change the value of the @numrows variable to determine the number of rows in the table. I ran
this code with numbers varying from 10,000 through 100,000 in steps of 10,000. Figure 3-3
shows a graphical depiction of the benchmark test I ran.

C03621977.fm Page 126 Wednesday, April 19, 2006 8:32 AM

Chapter 3 Cursors 127

Listing 3-6 Benchmark code for Maximum Concurrent Sessions problem

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.Sessions') IS NOT NULL

DROP TABLE dbo.Sessions

GO

DECLARE @numrows AS INT;

SET @numrows = 10000;

-- Test with 10K - 100K

SELECT

IDENTITY(int, 1, 1) AS keycol,

D.*,

DATEADD(

second,

1 + ABS(CHECKSUM(NEWID())) % (20*60),

starttime) AS endtime

INTO dbo.Sessions

FROM

(

SELECT

'app' + CAST(1 + ABS(CHECKSUM(NEWID())) % 10 AS VARCHAR(10)) AS app,

'user1' AS usr,

'host1' AS host,

DATEADD(

second,

1 + ABS(CHECKSUM(NEWID())) % (30*24*60*60),

'20040101') AS starttime

FROM dbo.Nums

WHERE n <= @numrows

) AS D;

ALTER TABLE dbo.Sessions ADD PRIMARY KEY(keycol);

CREATE INDEX idx_app_st_et ON dbo.Sessions(app, starttime, endtime);

DBCC FREEPROCCACHE WITH NO_INFOMSGS;

DBCC DROPCLEANBUFFERS WITH NO_INFOMSGS;

DECLARE @dt1 AS DATETIME, @dt2 AS DATETIME,

@dt3 AS DATETIME, @dt4 AS DATETIME;

SET @dt1 = GETDATE();

-- Set-Based Solution

SELECT app, MAX(concurrent) AS mx

FROM (SELECT app,

(SELECT COUNT(*)

FROM dbo.Sessions AS S2

WHERE S1.app = S2.app

AND S1.ts >= S2.starttime

AND S1.ts < S2.endtime) AS concurrent

FROM (SELECT DISTINCT app, starttime AS ts

FROM dbo.Sessions) AS S1) AS C

C03621977.fm Page 127 Wednesday, April 19, 2006 8:32 AM

128 Inside Microsoft SQL Server 2005: T-SQL Programming

GROUP BY app;

SET @dt2 = GETDATE();

DBCC FREEPROCCACHE WITH NO_INFOMSGS;

DBCC DROPCLEANBUFFERS WITH NO_INFOMSGS;

SET @dt3 = GETDATE();

-- Cursor-Based Solution

DECLARE

@app AS VARCHAR(10), @prevapp AS VARCHAR (10), @ts AS datetime,

@event_type AS INT, @concurrent AS INT, @mx AS INT;

DECLARE @Result TABLE(app VARCHAR(10), mx INT);

DECLARE C CURSOR FAST_FORWARD FOR

SELECT app, starttime AS ts, 1 AS event_type FROM dbo.Sessions

UNION ALL

SELECT app, endtime, -1 FROM dbo.Sessions

ORDER BY app, ts, event_type;

OPEN C;

FETCH NEXT FROM C INTO @app, @ts, @event_type;

SELECT @prevapp = @app, @concurrent = 0, @mx = 0;

WHILE @@fetch_status = 0

BEGIN

IF @app <> @prevapp

BEGIN

INSERT INTO @Result VALUES(@prevapp, @mx);

SELECT @prevapp = @app, @concurrent = 0, @mx = 0;

END

SET @concurrent = @concurrent + @event_type;

IF @concurrent > @mx SET @mx = @concurrent;

FETCH NEXT FROM C INTO @app, @ts, @event_type;

END

IF @prevapp IS NOT NULL

INSERT INTO @Result VALUES(@prevapp, @mx);

CLOSE C

DEALLOCATE C

SELECT * FROM @Result;

SET @dt4 = GETDATE();

PRINT CAST(@numrows AS VARCHAR(10)) + ' rows, set-based: '

+ CAST(DATEDIFF(ms, @dt1, @dt2) / 1000. AS VARCHAR(30))

+ ', cursor: '

+ CAST(DATEDIFF(ms, @dt3, @dt4) / 1000. AS VARCHAR(30))

+ ' (sec)';

C03621977.fm Page 128 Wednesday, April 19, 2006 8:32 AM

Chapter 3 Cursors 129

Figure 3-3 Benchmark for Maximum Concurrent Sessions solutions

Again, you can see a nicely shaped parabola in the set-based solution’s graph, and now you
know how to explain it: remember—if traffic increases by a factor of f, the number of leaf-level
rows inspected by the set-based query grows by a factor of f 2.

Tip It might seem that all the cases in which I show cursor code that performs better than

set-based code have to do with problems where cursor code has a complexity of O(n) and

set-based code has a complexity of O(n²), where n is the number of rows in the table. These

are just convenient problems to demonstrate performance differences. However, you might

face problems for which the solutions have different complexities. The important point is to

be able to estimate complexity and performance. If you want to learn more about algorith-

mic complexity, visit the Web site of the National Institute for Standards and Technologies. Go

to http://www.nist.gov/dads/, and search for complexity, or access the definition directly at

http://www.nist.gov/dads/HTML/complexity.html.

Interestingly, this is yet another type of problem where a more complete implementation of
the OVER clause would have allowed for a set-based solution to perform substantially faster
than the cursor one. Here’s what the set-based solution would have looked like if SQL Server
supported ORDER BY in the OVER clause for aggregations:

SELECT app, MAX(concurrent) AS mx

FROM (SELECT app, SUM(event_type)

OVER(PARTITION BY app ORDER BY ts, event_type) AS concurrent

FROM (SELECT app, starttime AS ts, 1 AS event_type FROM dbo.Sessions

UNION ALL

SELECT app, endtime, -1 FROM dbo.Sessions) AS D1) AS D2

GROUP BY app;

180

200

160

140

120

100

80

60

40

20

0
0 10 20 30 40 50 60 70 80 90 100

set-based cursor

Rows (thousands)

Max Concurrent Sessions Benchmark

R
u

n
 T

im
e
 (

S
e
c)

C03621977.fm Page 129 Wednesday, April 19, 2006 8:32 AM

130 Inside Microsoft SQL Server 2005: T-SQL Programming

Before I proceed to the next class of problems, I’d like to stress the importance of using good
sample data in your benchmarks. Too often I have seen programmers simply duplicate data
from a small table many times to generate larger sets of sample data. With our set-based solu-
tion, remember the derived table query that generates the timestamps:

SELECT DISTINCT app, starttime AS ts

FROM dbo.Sessions

If you simply duplicate the small sample data that I provided in Listing 3-4 (16 rows) many
times, you will not increase the number of DISTINCT timestamps accordingly. So the sub-
query that counts rows will end up being invoked only 16 times regardless of how many times
you duplicated the set. The results that you will get when measuring performance won’t give
you a true indication of cost for production environments where, obviously, you have almost
no duplicates in the data.

The solution to the problem can be even more elusive if you don’t have any DISTINCT applied
to remove duplicates. To demonstrate the problem, first rerun the code in Listing 3-4 to repop-
ulate the Sessions table with 16 rows.

Next, run the following query, which is similar to the solution I showed earlier, but run it with-
out removing duplicates first. Then examine the execution plan shown in Figure 3-4:

SELECT app, MAX(concurrent) AS mx

FROM (SELECT app,

(SELECT COUNT(*)

FROM dbo.Sessions AS S2

WHERE S1.app = S2.app

AND S1.starttime >= S2.starttime

AND S1.starttime < S2.endtime) AS concurrent

FROM dbo.Sessions AS S1) AS C

GROUP BY app;

Figure 3-4 Execution plan for revised Maximum Concurrent Sessions solution,

small data set

Here the problem is not yet apparent because there are no duplicates. The plan is, in fact,
almost identical to the one generated for the solution that does remove duplicates. The only
difference is that here there’s no stream aggregate operator that removes duplicates,
naturally.

C03621977.fm Page 130 Wednesday, April 19, 2006 8:32 AM

Chapter 3 Cursors 131

Next, populate the table with 10,000 duplicates of each row:

INSERT INTO dbo.Sessions

SELECT app, usr, host, starttime, endtime

FROM dbo.Sessions, dbo.Nums

WHERE n <= 10000;

Rerun the solution query, and examine the execution plan shown in Figure 3-5.

Figure 3-5 Execution plan for revised Maximum Concurrent Sessions solution, large data

set with high density

If you have a keen eye, you will find an interesting difference between this plan and the previ-
ous one, even though the query remained the same and only the data density changed. This
plan spools, instead of recalculating, row counts that were already calculated for a given app,
ts. Before counting rows, the plan first looks in the spool to check whether the count has
already been calculated. If the count has been calculated, the plan will grab the count from the
spool instead of scanning rows to count. The Index Seek and Stream Aggregate operations
took place here only 16 times—once for each unique app, ts value, and not once for each row
in the table as might happen in production. Again, you see how a bad choice of sample data
can yield a result that is not representative of your production environment. Using this sample
data and being oblivious to the discrepancy might lead you to believe that this set-based solu-
tion scales linearly. But of course, if you use more realistic sample data, such as the data I used
in my benchmark, you won’t fall into that trap. I used random calculations for the start times
within the month and added a random value of up to 20 minutes for the end time, assuming
that this represents the average session duration in my production environment.

Matching Problems

The algorithms for the solutions that I have discussed so far, both set-based and cursor-based,
had simple to moderate complexity levels. This section covers a class of problems that are
algorithmically much more complex, known as matching problems. In a matching problem,
you have a specific set of items of different values and volumes and one container of a given
size, and you must find the subset of items with the greatest possible value that will fit into the
container. I have yet to find reasonable set-based solutions that are nearly as good as cursor-
based solutions, both in terms of performance and simplicity. I won’t even bother to provide
the set-based solutions I devised because they’re very complex and slow. Instead, I’ll focus on
cursor-based solutions.

I’ll introduce a couple of simple variations of the problem. You’re given the tables Events and
Rooms, which you create and populate by running the code in Listing 3-7.

C03621977.fm Page 131 Wednesday, April 19, 2006 8:32 AM

132 Inside Microsoft SQL Server 2005: T-SQL Programming

Listing 3-7 Code that creates and populates the Events and Rooms tables

USE tempdb;

GO

IF OBJECT_ID('dbo.Events') IS NOT NULL

DROP TABLE dbo.Events;

GO

IF OBJECT_ID('dbo.Rooms') IS NOT NULL

DROP TABLE dbo.Rooms;

GO

CREATE TABLE dbo.Rooms

(

roomid VARCHAR(10) NOT NULL PRIMARY KEY,

seats INT NOT NULL

);

INSERT INTO dbo.Rooms(roomid, seats) VALUES('C001', 2000);

INSERT INTO dbo.Rooms(roomid, seats) VALUES('B101', 1500);

INSERT INTO dbo.Rooms(roomid, seats) VALUES('B102', 100);

INSERT INTO dbo.Rooms(roomid, seats) VALUES('R103', 40);

INSERT INTO dbo.Rooms(roomid, seats) VALUES('R104', 40);

INSERT INTO dbo.Rooms(roomid, seats) VALUES('B201', 1000);

INSERT INTO dbo.Rooms(roomid, seats) VALUES('R202', 100);

INSERT INTO dbo.Rooms(roomid, seats) VALUES('R203', 50);

INSERT INTO dbo.Rooms(roomid, seats) VALUES('B301', 600);

INSERT INTO dbo.Rooms(roomid, seats) VALUES('R302', 55);

INSERT INTO dbo.Rooms(roomid, seats) VALUES('R303', 55);

CREATE TABLE dbo.Events

(

eventid INT NOT NULL PRIMARY KEY,

eventdesc VARCHAR(25) NOT NULL,

attendees INT NOT NULL

);

INSERT INTO dbo.Events(eventid, eventdesc, attendees)

VALUES(1, 'Adv T-SQL Seminar', 203);

INSERT INTO dbo.Events(eventid, eventdesc, attendees)

VALUES(2, 'Logic Seminar', 48);

INSERT INTO dbo.Events(eventid, eventdesc, attendees)

VALUES(3, 'DBA Seminar', 212);

INSERT INTO dbo.Events(eventid, eventdesc, attendees)

VALUES(4, 'XML Seminar', 98);

INSERT INTO dbo.Events(eventid, eventdesc, attendees)

VALUES(5, 'Security Seminar', 892);

INSERT INTO dbo.Events(eventid, eventdesc, attendees)

VALUES(6, 'Modeling Seminar', 48);

GO

CREATE INDEX idx_att_eid_edesc

ON dbo.Events(attendees, eventid, eventdesc);

CREATE INDEX idx_seats_rid

ON dbo.Rooms(seats, roomid);

C03621977.fm Page 132 Wednesday, April 19, 2006 8:32 AM

Chapter 3 Cursors 133

The Events table holds information for seminars that you’re supposed to run on a given date.
Typically, you will need to keep track of events on many dates, but our task here will be one
that we would have to perform separately for each day of scheduled events. Assume that this
data represents one day’s worth of events; for simplicity’s sake, I didn’t include a date column
because all its values would be the same. The Rooms table holds room capacity information.
To start with a simple task, assume that you have reserved a conference center with the guar-
antee that there will be enough rooms available to host all your seminars. You now need to
match events to rooms with as few empty seats as possible, because the cost of renting a room
is determined by the room’s seating capacity, not by the number of seminar attendees.

A naïve algorithm that you can apply is somewhat similar to a merge join algorithm that the
optimizer uses to process joins. Figure 3-6 has a graphical depiction of it, which you might
find handy when following the verbal description of the algorithm. Listing 3-8 has the code
implementing the algorithm.

Figure 3-6 Matching algorithm for guaranteed solution scenario

R101

40

R104

40

R203

50

R302

55

R303

55

B102

100

R202

100

B301

600

B201

1000

B101

1500

C001

2000

2

48

6

48

4

98

1

203

3

212

5

892

In
cr

e
a
si

n
g

Event Room

Event Room

No Match

Match

Events

Rooms

C03621977.fm Page 133 Wednesday, April 19, 2006 8:32 AM

134 Inside Microsoft SQL Server 2005: T-SQL Programming

Listing 3-8 Cursor code for matching problem (guaranteed solution)

DECLARE

@roomid AS VARCHAR(10), @seats AS INT,

@eventid AS INT, @attendees AS INT;

DECLARE @Result TABLE(roomid VARCHAR(10), eventid INT);

DECLARE CRooms CURSOR FAST_FORWARD FOR

SELECT roomid, seats FROM dbo.Rooms

ORDER BY seats, roomid;

DECLARE CEvents CURSOR FAST_FORWARD FOR

SELECT eventid, attendees FROM dbo.Events

ORDER BY attendees, eventid;

OPEN CRooms;

OPEN CEvents;

FETCH NEXT FROM CEvents INTO @eventid, @attendees;

WHILE @@FETCH_STATUS = 0

BEGIN

FETCH NEXT FROM CRooms INTO @roomid, @seats;

WHILE @@FETCH_STATUS = 0 AND @seats < @attendees

FETCH NEXT FROM CRooms INTO @roomid, @seats;

IF @@FETCH_STATUS = 0

INSERT INTO @Result(roomid, eventid) VALUES(@roomid, @eventid);

ELSE

BEGIN

RAISERROR('Not enough rooms for events.', 16, 1);

BREAK;

END

FETCH NEXT FROM CEvents INTO @eventid, @attendees;

END

CLOSE CRooms;

CLOSE CEvents;

DEALLOCATE CRooms;

DEALLOCATE CEvents;

SELECT roomid, eventid FROM @Result;

Here’s a description of the algorithm as it’s implemented with cursors:

■ Declare two cursors, one on the list of rooms (CRooms) sorted by increasing capacity
(number of seats), and one on the list of events (CEvents) sorted by increasing number
of attendees.

■ Fetch the first (smallest) event from the CEvents cursor.

C03621977.fm Page 134 Wednesday, April 19, 2006 8:32 AM

Chapter 3 Cursors 135

■ While the fetch returned an actual event that needs a room:

❑ Fetch the smallest unrented room from CRooms. If there was no available room, or
if the room you fetched is too small for the event, fetch the next smallest room from
CRooms, and continue fetching as long as you keep fetching actual rooms and they
are too small for the event. You will either find a big enough room, or you will run
out of rooms without finding one.

❑ If you did not run out of rooms, and the last fetch yielded a room and the number
of seats in that room is smaller than the number of attendees in the current event:

● If you found a big enough room, schedule the current event in that room. If you
did not, then you must have run out of rooms, so generate an error saying that
there are not enough rooms to host all the events, and break out of the loop.

● Fetch another event.

■ Return the room/event pairs you stored aside.

Notice that you scan both rooms and events in order, never backing up; you merge matching
pairs until you either run out of events to find rooms for or you run out of rooms to accom-
modate events. In the latter case—you run out of rooms, generating an error, because the
algorithm used was guaranteed to find a solution if one existed.

Next, let’s complicate the problem by assuming that even if there aren’t enough rooms for all
events, you still want to schedule something. This will be the case if you remove rooms with
a number of seats greater than 600:

DELETE FROM dbo.Rooms WHERE seats > 600;

Assume you need to come up with a greedy algorithm that finds seats for the highest possible
number of attendees (to increase revenue) and for that number of attendees, involves the low-
est cost. The algorithm I used for this case is graphically illustrated in Figure 3-7 and imple-
mented with cursors in Listing 3-9.

Listing 3-9 Cursor code for matching problem (nonguaranteed solution)

DECLARE

@roomid AS VARCHAR(10), @seats AS INT,

@eventid AS INT, @attendees AS INT;

DECLARE @Events TABLE(eventid INT, attendees INT);

DECLARE @Result TABLE(roomid VARCHAR(10), eventid INT);

-- Step 1: Descending

DECLARE CRoomsDesc CURSOR FAST_FORWARD FOR

SELECT roomid, seats FROM dbo.Rooms

ORDER BY seats DESC, roomid DESC;

DECLARE CEventsDesc CURSOR FAST_FORWARD FOR

SELECT eventid, attendees FROM dbo.Events

ORDER BY attendees DESC, eventid DESC;

C03621977.fm Page 135 Wednesday, April 19, 2006 8:32 AM

136 Inside Microsoft SQL Server 2005: T-SQL Programming

OPEN CRoomsDesc;

OPEN CEventsDesc;

FETCH NEXT FROM CRoomsDesc INTO @roomid, @seats;

WHILE @@FETCH_STATUS = 0

BEGIN

FETCH NEXT FROM CEventsDesc INTO @eventid, @attendees;

WHILE @@FETCH_STATUS = 0 AND @seats < @attendees

FETCH NEXT FROM CEventsDesc INTO @eventid, @attendees;

IF @@FETCH_STATUS = 0

INSERT INTO @Events(eventid, attendees)

VALUES(@eventid, @attendees);

ELSE

BREAK;

FETCH NEXT FROM CRoomsDesc INTO @roomid, @seats;

END

CLOSE CRoomsDesc;

CLOSE CEventsDesc;

DEALLOCATE CRoomsDesc;

DEALLOCATE CEventsDesc;

-- Step 2: Ascending

DECLARE CRooms CURSOR FAST_FORWARD FOR

SELECT roomid, seats FROM Rooms

ORDER BY seats, roomid;

DECLARE CEvents CURSOR FAST_FORWARD FOR

SELECT eventid, attendees FROM @Events

ORDER BY attendees, eventid;

OPEN CRooms;

OPEN CEvents;

FETCH NEXT FROM CEvents INTO @eventid, @attendees;

WHILE @@FETCH_STATUS = 0

BEGIN

FETCH NEXT FROM CRooms INTO @roomid, @seats;

WHILE @@FETCH_STATUS = 0 AND @seats < @attendees

FETCH NEXT FROM CRooms INTO @roomid, @seats;

IF @@FETCH_STATUS = 0

INSERT INTO @Result(roomid, eventid) VALUES(@roomid, @eventid);

ELSE

BEGIN

RAISERROR('Not enough rooms for events.', 16, 1);

BREAK;

END

FETCH NEXT FROM CEvents INTO @eventid, @attendees;

END

C03621977.fm Page 136 Wednesday, April 19, 2006 8:32 AM

Chapter 3 Cursors 137

CLOSE CRooms;

CLOSE CEvents;

DEALLOCATE CRooms;

DEALLOCATE CEvents;

SELECT roomid, eventid FROM @Result;

Figure 3-7 Greedy matching algorithm for nonguaranteed solution scenario

The algorithm has two phases:

1. Use logic similar to the previous algorithm to match events to rooms, but scan both in
descending order to assure the largest events can find rooms. Store the eventids that
found a room in a table variable (@Events). At this point, you have the list of events you
can fit that produce the highest revenue, but you also have the least efficient room utili-
zation, meaning the highest possible costs. However, the purpose of the first step was
merely to figure out the most profitable events that you can accommodate.

2. The next step is identical to the algorithm in the previous problem with one small revision:
declare the CEvents cursor against the @Events table variable and not against the real Events
table. By doing this, you end up with the most efficient room utilization for this set of events.

R101

40

R104

40

R203

50

R302

55

R303

55

B102

100

R202

100

B301

600

2

48

6

48

4

98

3

212
In

cr
e
a
si

n
g

Rooms

Events

Event Room

Event Room

No Match

Match

R101

40

R104

40

R203

50

R302

55

R303

55

B102

100

R202

100

B301

600

2

48

6

48

4

98

1

203

3

212

5

892

D
e
cr

e
a
si

n
g

Rooms

Events

C03621977.fm Page 137 Wednesday, April 19, 2006 8:32 AM

138 Inside Microsoft SQL Server 2005: T-SQL Programming

I’d like to thank my good friend, SQL Server MVP Fernando G. Guerrero, who is the CEO of
Solid Quality Learning. Fernando suggested ways to improve and optimize the algorithms
for this class of problems.

If you’re up for challenges, try to look for ways to solve these problems with set-based solu-
tions. Also, try to think of solutions when adding another layer of complexity. Suppose each
event has a revenue value stored with it that does not necessarily correspond to the number of
attendees. Each room has a cost stored with it that does not necessarily correspond to its
capacity. Again, you have no guarantee that there will be enough rooms to host all events. The
challenge is to find the most profitable solution.

Conclusion
Throughout the book, I try to stress the advantages set-based solutions have over cursor-based
ones. I show many examples of tuned set-based solutions that outperform the cursor alterna-
tives. In this chapter, I explained why that’s the case for most types of problems. Nevertheless,
I tried giving you the tools to identify the classes of problems that are exceptions—where
currently SQL Server 2005 doesn’t provide a better solution than using cursors. Some of the
problems would have better set-based answers if SQL Server implemented additional ANSI
constructs, whereas others don’t even have proper answers in the ANSI standard yet. The
point is that there’s a time and place for cursors if they are used wisely and if a set-based
means of solving the problem cannot be found.

C03621977.fm Page 138 Wednesday, April 19, 2006 8:32 AM

